Variational Inequality and Complementarity Problems

"Gemeinsame Jahrestagung der GCMA \& GCWD 2007"

Dr.rer.nat. Zhengyu Wang

Nanjing University
24.11.2007, Karlsruhe

Summary of Talk

- Source Problems
- Optimization Problem
- Free Boundary Problem
- Equilibrium Problem
—
- Algorithms
- Josephy-Newton-Type Algorithm
- Nonsmooth Newton Algorithms
- Smoothing Algorithms

The variational inequality problem

Given $\Omega \subseteq R^{n}$ nonempty, and $F: R^{n} \rightarrow R^{n}$. The variational inequality problem, denoted by $\operatorname{VIP}(\Omega, F)$, is to find a vector $x^{*} \in \Omega$ such that

$$
\left(y-x^{*}\right)^{T} F\left(x^{*}\right) \geq 0, \quad \forall y \in \Omega
$$

The nonlinear complementarity problem

Given $F: R^{n} \rightarrow R^{n}$. The nonlinear complementarity problem, denoted by $N C P(f)$, is to find a vector x^{*} such that

$$
x^{*} \geq 0, \quad F\left(x^{*}\right) \geq 0, \quad x^{* T} F\left(x^{*}\right)=0 .
$$

- Source Problems

- Optimization Problem

Given $\Omega \subseteq R^{n}$ nonempty, and $f: R^{n} \rightarrow R$. A minimization problem is to find a vector $x^{*} \in \Omega$ such that for any $x \in \Omega$ (or $x \in \Omega \cap \mathcal{N}\left(x^{*}\right)$) it holds $f\left(x^{*}\right) \leq f(x)$, where $\mathcal{N}\left(x^{*}\right)$ denotes a certain neighborhood of x^{*}. We call x^{*} a global (or local) minimizer of function f, and call $f\left(x^{*}\right)$ a global (or local) minimum of f.

Notation:

$$
\begin{aligned}
& \min f(x) \\
& \text { S.t. } x \in \Omega .
\end{aligned}
$$

Optimization Problem and VIP

Let $\Omega \subseteq R^{n}$ be nonempty and convex, let f : $R^{n} \rightarrow R$ be differentiable and $F(x)=\nabla f(x)$.

- x^{*} solves $\operatorname{VIP}(\Omega, F)$ if and only if there is no feasible decent direction at x^{*}.
- Furthermore, if f is pseudo-convex, then any solution of $\operatorname{VIP}(\Omega, F)$ is a global minimizer of f over Ω.

- Source Problems

- Free Boundary Problem

Find a function $u(t, s): D \subseteq R^{2} \rightarrow R$ such that

$$
\left\{\begin{aligned}
\triangle u=\varphi\left(t, s, u, u_{t}^{\prime}, u_{s}^{\prime}\right) & & \text { in } \quad D_{0} \\
\triangle u \leq \varphi\left(t, s, u, u_{t}^{\prime}, u_{s}^{\prime}\right) & & \text { in } \quad D_{-} \\
\triangle u \geq \varphi\left(t, s, u, u_{t}^{\prime}, u_{s}^{\prime}\right) & & \text { in } \quad D_{+} \\
u=\psi(t, s) & & \text { on } \partial D,
\end{aligned}\right.
$$

where the domains

$$
\begin{aligned}
D_{0} & :=\{(t, s) \in D: \underline{u}<u<\bar{u}\} \\
D_{-} & :=\{(t, s) \in D: u=\underline{u}\} \\
D_{+} & :=\{(t, s) \in D: u=\bar{u}\}
\end{aligned}
$$

are unknown.

Free Boundary Problem and VIP - I

Let the free boundary problem have a unique solution u. How to approximate it ?

Impose square mesh

$$
\left(t_{m}, s_{l}\right)=(m h, l h), \quad \text { where }\left\{\begin{array}{l}
h=\frac{1}{k+1} \\
m, l=1, \ldots, k
\end{array}\right.
$$

Find $u_{m, l}, m, l=1, \ldots, k$ such that

$$
u\left(t_{m}, s_{l}\right) \simeq u_{m, l}
$$

Free Boundary Problem and VIP - II

- Approximate $\triangle u$ at $\left(t_{m}, s_{l}\right)$ by:

$$
\frac{u_{m-1, l}+u_{m+1, l}+u_{m, l-1}+u_{m, l+1}-4 u_{m, l}}{h^{2}}
$$

- Approximate u_{t}^{\prime} at $\left(t_{m}, s_{l}\right)$ by:

$$
\frac{u_{m+1, l}-u_{m-1, l}}{2 h}
$$

- Approximate u_{s}^{\prime} at $\left(t_{m}, s_{l}\right)$ by:

$$
\frac{u_{m, l+1}-u_{m, l-1}}{2 h}
$$

Free Boundary Problem and VIP - III

$$
u=\left(u_{m, l}\right) \in R^{k^{2}} \text { is a solution of } \operatorname{VIP}(\Omega, F)
$$

$$
F_{m, l}:=-u_{m-1, l}-u_{m+1, l}-u_{m, l-1}-u_{m, l+1}+4 u_{m, l}
$$

$$
+h^{2} \varphi\left(t_{m}, s_{l}, u_{m, l}, \frac{u_{m+1, l}-u_{m-1, l}}{2 h}, \frac{u_{m, l+1}-u_{m, l-1}}{2 h}\right)
$$

$$
\Omega:=\left\{u=\left(u_{m, l}\right) \mid\left(\underline{u}\left(t_{m}, s_{l}\right)\right) \leq u \leq\left(\bar{u}\left(t_{m}, s_{l}\right)\right)\right\}
$$

- Source Problems

- Equilibrium Problem

Set of players: $\quad N=\{1,2, \ldots, n\}$,

Strategy vector: $\quad x_{i} \in R^{m_{i}}$,

Strategy set: $\quad X_{i} \subseteq R^{m_{i}}$,

Strategy space: $\quad X=\prod_{i \in N} X_{i}$,

Utility function: $u_{i}: X \rightarrow R$,

Utility vector: $u=\left(u_{1}, u_{2}, \ldots, u_{n}\right)^{T}$.

Nash Equilibrium and VIP

A Nash equilibrium $x^{*} \in X$ of the game $N E(X, u)$ is defined as a point at which no player can unilaterally increase his utility, that is:

$$
u_{i}\left(x_{i}^{*}, x_{N-\{i\}}^{*}\right) \geq u_{i}\left(x_{i}, x_{N-\{i\}}^{*}\right) .
$$

Let X_{i} be nonempty, closed and convex subset, and $u_{i}: X \rightarrow R$ be once continuously differentiable and pseudo-concave w.r.t. x_{i} for all $i \in N$. Then x^{*} is a Nash equilibrium if and only if $x^{*} \in X$ is a solution of $\operatorname{VIP}(X, F)$, where

$$
F(x)=\left(F_{i}(x): i \in N\right), \quad F_{i}(x)=-\partial u_{i}(x) / \partial x_{i} .
$$

- Algorithms

- Josephy-Newton-Type Algorithm - I

General Iterative Scheme:

Generate $\left\{x^{k}\right\}_{k=0}^{\infty} \subset R^{n}$ such that

$$
x^{k+1} \text { solves } \operatorname{VIP}\left(\Omega, F^{k}\right)
$$

where

$$
F^{k}(x)=F\left(x^{k}\right)+A\left(x^{k}\right)\left(x-x^{k}\right) .
$$

- Algorithms

- Josephy-Newton-Type Algorithm - II
$D(x): \quad$ diagonal part of $F^{\prime}(x)$
$L(x): \quad$ lower triangular part of $F^{\prime}(x)$
$U(x)$: upper triangular part of $F^{\prime}(x)$
ω^{*} :
a scalar parameter $\in(0,2)$
G :
a fixed, symmetric, positive
definite matrix

- Algorithms

- Josephy-Newton-Type Algorithm - III

Frequently Used Algorithms:
(a) Josephy-Newton Algorithm

$$
A\left(x^{k}\right)=F^{\prime}\left(x^{k}\right)
$$

(b) Quasi-Newton Algorithm

$$
A\left(x^{k}\right) \simeq F^{\prime}\left(x^{k}\right)
$$

(c) Projection Algorithm

$$
A\left(x^{k}\right)=G
$$

- Algorithms

- Josephy-Newton-Type Algorithm - IV

Other Algorithms:
(d) Successive Overrelaxation Algorithm (SOR)

$$
A\left(x^{k}\right)=\left\{\begin{array}{l}
L\left(x^{k}\right)+D\left(x^{k}\right) / \omega^{*} \\
U\left(x^{k}\right)+D\left(x^{k}\right) / \omega^{*}
\end{array}\right.
$$

(e) Symmetrized Newton Algorithm

$$
A\left(x^{k}\right)=\frac{1}{2}\left(F^{\prime}\left(x^{k}\right)+F^{\prime}\left(x^{k}\right)^{T}\right)
$$

- Algorithms

- Josephy-Newton-Type Algorithm - V

Merit Function
Function $\theta: R^{n} \rightarrow R_{+}$is a merit function provided that $\theta\left(x^{*}\right)=0$ if and only if x^{*} solves $\operatorname{VIP}(\Omega, F)$.

Linear Search

Given x^{k}. Compute \tilde{x}^{k+1} such that

$$
\tilde{x}^{k+1} \quad \text { solves } \operatorname{VIP}\left(\Omega, F^{k}\right) .
$$

Set $d^{k}:=\tilde{x}^{k+1}-x^{k}$. Find λ^{k} such that

$$
\theta\left(x^{k}+\lambda^{k} d^{k}\right)=\min _{\lambda \in(0, \bar{\lambda})} \theta\left(x^{k}+\lambda d^{k}\right) .
$$

Set

$$
x^{k+1}:=x^{k}+\lambda^{k} d^{k} .
$$

Equation Reformulation

Find $H: R^{n} \rightarrow R^{n}$ such that x^{*} solves $\operatorname{VIP}(\Omega, F)$ if and only if
$H(x)=0$
\uparrow
Usually Nonsmooth

- $H(x)=x-\operatorname{Pr}_{\Omega, G}\left(x-G^{-1} F(x)\right)$
- $H(x)=\operatorname{mid}\{x-L, x-U, F(x)\}$, when

$$
\Omega=\left\{x \in R^{n} \mid L \leq x \leq U\right\}
$$

- $H(x)=\min \{x, F(x)\}=0$ when $\Omega=R_{+}^{n}$.

- Algorithms

- Nonsmooth Newton Algorithms

Given $x^{k} \in R^{n}$. Generate $\left\{x^{k}\right\}_{k=0}^{\infty}$ such that

$$
x^{k+1}:=x^{k}-A\left(x^{k}\right)^{-1} H\left(x^{k}\right),
$$

where

$$
A\left(x^{k}\right) \in \underset{\uparrow}{\partial H}\left(x^{k}\right) .
$$

Generalized Jacobian

$$
\partial H(x):=\overline{c o}\left\{J=\lim _{m \rightarrow \infty} G^{\prime}\left(y^{m}\right)\right\}
$$

where $y^{m} \rightarrow x, H$ is differentiable at each y^{m}.

Homotopy Reformulation

Find $H(s, x): R \times R^{n} \rightarrow R^{n}$ such that x^{*} solves $\operatorname{VIP}(\Omega, F)$ if and only if

$H(s, x)$ differentiable when $s \neq 0$.

Example for $N C P(F)$

$$
H(s, x)=\left(\sqrt{x_{i}^{2}+F_{i}(x)^{2}+s}-\left(x_{i}+F_{i}(x)\right)\right)
$$

- Algorithms

- Smoothing Algorithms

Choose $\left\{s_{\kappa}\right\} \subseteq R_{++}$such that $s_{\kappa} \downarrow 0$. Compute an approximate solution $x^{\kappa, n_{\kappa}}$ of

$$
H\left(s_{\kappa}, x\right)=0 .
$$

Starting from $x^{\kappa, n_{\kappa}}$, an approximate solution $x^{\kappa+1, n_{\kappa+1}}$ of

$$
H\left(s_{\kappa+1}, x\right)=0 .
$$

Software

- PATH
ftp://ftp.cs.wisc.edu/math-prog /solvers/path/matlab/
- LANCELOT

Literature

- F. Facchinei and J.S. Pang (2003). FiniteDimensional Variational Inequalities and Complementarity Problems. Springer-Verlag, New York.
- M.C. Ferris and J.S. Pang (1997). Engineering and economic applications of complementarity problems. SIAM Rev. 39:669713.
- M.C. Ferris and T.S. Munson (1999). Interfaces to PATH 3.0: design, implementation and usage. Comput. Optim. Appl. 12:207-227.

Thank You All!

