Variational Inequality and Complementarity Problems

"Gemeinsame Jahrestagung der GCMA & GCWD 2007"

Dr.rer.nat. Zhengyu Wang

Nanjing University

24.11.2007, Karlsruhe

Summary of Talk

- Source Problems
 - Optimization Problem
 - Free Boundary Problem
 - Equilibrium Problem

—

- Algorithms
 - Josephy-Newton-Type Algorithm
 - Nonsmooth Newton Algorithms
 - Smoothing Algorithms

—

The variational inequality problem

Given $\Omega \subseteq \mathbb{R}^n$ nonempty, and $F : \mathbb{R}^n \to \mathbb{R}^n$. The variational inequality problem, denoted by $VIP(\Omega, F)$, is to find a vector $x^* \in \Omega$ such that

$$(y-x^*)^T F(x^*) \ge 0, \qquad \forall y \in \Omega.$$

The nonlinear complementarity problem Given $F : \mathbb{R}^n \to \mathbb{R}^n$. The nonlinear complementarity problem, denoted by NCP(f), is to find a vector x^* such that

$$x^* \ge 0, \qquad F(x^*) \ge 0, \qquad x^{*T}F(x^*) = 0.$$

Source Problems

Optimization Problem

Given $\Omega \subseteq \mathbb{R}^n$ nonempty, and $f : \mathbb{R}^n \to \mathbb{R}$. A minimization problem is to find a vector $x^* \in \Omega$ such that for any $x \in \Omega$ (or $x \in \Omega \cap \mathcal{N}(x^*)$) it holds $f(x^*) \leq f(x)$, where $\mathcal{N}(x^*)$ denotes a certain neighborhood of x^* . We call x^* a global (or local) minimizer of function f, and call $f(x^*)$ a global (or local) minimum of f.

Notation:

 $\min f(x)$

S.t.
$$x \in \Omega$$
.

Optimization Problem and VIP

Let $\Omega \subseteq \mathbb{R}^n$ be nonempty and convex, let f: $\mathbb{R}^n \to \mathbb{R}$ be differentiable and $F(x) = \nabla f(x)$.

- x^* solves $VIP(\Omega, F)$ if and only if there is no feasible decent direction at x^* .
- Furthermore, if f is pseudo-convex, then any solution of $VIP(\Omega, F)$ is a global minimizer of f over Ω .

Source Problems

- Free Boundary Problem

Find a function $u(t,s): D \subseteq R^2 \to R$ such that

$$\begin{cases} \Delta u = \varphi(t, s, u, u'_t, u'_s) & \text{in } D_0 \\ \Delta u \leq \varphi(t, s, u, u'_t, u'_s) & \text{in } D_- \\ \Delta u \geq \varphi(t, s, u, u'_t, u'_s) & \text{in } D_+ \\ u = \psi(t, s) & \text{on } \partial D, \end{cases}$$

where the domains

$$D_{0} := \{(t,s) \in D : \underline{u} < u < \overline{u}\}$$
$$D_{-} := \{(t,s) \in D : u = \underline{u}\}$$
$$D_{+} := \{(t,s) \in D : u = \overline{u}\}$$
koowo

are unknown.

Free Boundary Problem and VIP – I

Let the free boundary problem have a unique solution u. How to approximate it ?

Impose square mesh

$$(t_m, s_l) = (mh, lh), \text{ where } \begin{cases} h = \frac{1}{k+1} \\ m, l = 1, \dots, k. \end{cases}$$

Find $u_{m,l}$, $m, l = 1, \ldots, k$ such that $u(t_m, s_l) \simeq u_{m,l}$.

Free Boundary Problem and VIP – II

• Approximate
$$\triangle u$$
 at (t_m, s_l) by:

$$\frac{u_{m-1,l} + u_{m+1,l} + u_{m,l-1} + u_{m,l+1} - 4u_{m,l}}{h^2}.$$

• Approximate u'_t at (t_m, s_l) by:

$$\frac{u_{m+1,l}-u_{m-1,l}}{2h}.$$

• Approximate u'_s at (t_m, s_l) by:

$$\frac{u_{m,l+1}-u_{m,l-1}}{2h}.$$

Free Boundary Problem and VIP – III

$$u = (u_{m,l}) \in \mathbb{R}^{k^2}$$
 is a solution of $VIP(\Omega, F)$,

$$F_{m,l} := -u_{m-1,l} - u_{m+1,l} - u_{m,l-1} - u_{m,l+1} + 4u_{m,l}$$
$$+ h^2 \varphi(t_m, s_l, u_{m,l}, \frac{u_{m+1,l} - u_{m-1,l}}{2h}, \frac{u_{m,l+1} - u_{m,l-1}}{2h})$$

$$\Omega := \{ u = (u_{m,l}) | (\underline{u}(t_m, s_l)) \le u \le (\overline{u}(t_m, s_l)) \}$$

Source Problems

- Equilibrium Problem

Set of players: $N = \{1, 2, \dots, n\}$,

Strategy vector: $x_i \in R^{m_i}$,

Strategy set: $X_i \subseteq R^{m_i}$,

Strategy space: $X = \prod_{i \in N} X_i$,

Utility function: $u_i: X \to R$,

Utility vector: $u = (u_1, u_2, \dots, u_n)^T$.

9

Nash Equilibrium and VIP

A Nash equilibrium $x^* \in X$ of the game NE(X, u)is defined as a point at which no player can unilaterally increase his utility, that is:

$$u_i(x_i^*, x_{N-\{i\}}^*) \ge u_i(x_i, x_{N-\{i\}}^*).$$

Let X_i be nonempty, closed and convex subset, and $u_i : X \to R$ be once continuously differentiable and pseudo-concave w.r.t. x_i for all $i \in N$. Then x^* is a Nash equilibrium if and only if $x^* \in X$ is a solution of VIP(X, F), where

$$F(x) = (F_i(x) : i \in N), \quad F_i(x) = -\partial u_i(x) / \partial x_i.$$

• <u>Algorithms</u>

- Josephy-Newton-Type Algorithm - I

General Iterative Scheme:

Generate $\{x^k\}_{k=0}^{\infty} \subset R^n$ such that

$$x^{k+1}$$
 solves $VIP(\Omega, F^k)$

where

$$F^{k}(x) = F(x^{k}) + A(x^{k})(x - x^{k}).$$

• Algorithms

Josephy-Newton-Type Algorithm – II

- D(x): diagonal part of F'(x)
- L(x): lower triangular part of F'(x)
- U(x): upper triangular part of F'(x)
- ω^* : a scalar parameter $\in (0,2)$
- *G* : a fixed, symmetric, positive definite matrix

Josephy-Newton-Type Algorithm – III

Frequently Used Algorithms:

(a) Josephy-Newton Algorithm

$$A(x^k) = F'(x^k)$$

(b) Quasi-Newton Algorithm $A(x^k) \simeq F'(x^k)$

(c) Projection Algorithm $A(x^k) = G$

Algorithms

– Josephy-Newton-Type Algorithm – IV

Other Algorithms:

.

(d) Successive Overrelaxation Algorithm (SOR) $A(x^{k}) = \begin{cases} L(x^{k}) + D(x^{k})/\omega^{*} \\ U(x^{k}) + D(x^{k})/\omega^{*} \end{cases}$ (e) Symmetrized Newton Algorithm $A(x^{k}) = \frac{1}{2} \left(\frac{1}{2} \left(\frac{k}{2} + \frac{1}{2} \left(\frac{k}{2} + \frac{1}{2} \right) \right) \left(\frac{k}{2} + \frac{1}{2} \left(\frac{k}{2} + \frac{1}{2} \right) \right)$

$$A(x^{k}) = \frac{1}{2}(F'(x^{k}) + F'(x^{k})^{T})$$

14

• Algorithms

Josephy-Newton-Type Algorithm – V

Merit Function

Function $\theta : \mathbb{R}^n \to \mathbb{R}_+$ is a merit function provided that $\theta(x^*) = 0$ if and only if x^* solves $VIP(\Omega, F)$.

Linear Search

Given x^k . Compute \tilde{x}^{k+1} such that \tilde{x}^{k+1} solves $VIP(\Omega, F^k)$. Set $d^k := \tilde{x}^{k+1} - x^k$. Find λ^k such that $\theta(x^k + \lambda^k d^k) = \min_{\lambda \in (0,\bar{\lambda})} \theta(x^k + \lambda d^k)$. Set

$$x^{k+1} := x^k + \lambda^k d^k.$$

Equation Reformulation

Find $H : \mathbb{R}^n \to \mathbb{R}^n$ such that x^* solves $VIP(\Omega, F)$ if and only if

$$H(x) = 0$$

$$\uparrow$$
Usually Nonsmooth

•
$$H(x) = x - Pr_{\Omega,G}(x - G^{-1}F(x))$$

•
$$H(x) = \min\{x - L, x - U, F(x)\}$$
, when

$$\Omega = \{x \in \mathbb{R}^n | L \le x \le U\}$$

•
$$H(x) = \min\{x, F(x)\} = 0$$
 when $\Omega = \mathbb{R}^n_+$.

Algorithms

- Nonsmooth Newton Algorithms

Given
$$x^k \in \mathbb{R}^n$$
. Generate $\{x^k\}_{k=0}^{\infty}$ such that $x^{k+1} := x^k - A(x^k)^{-1}H(x^k)$,

where

$$A(x^k) \in \partial H(x^k).$$

 \uparrow

Generalized Jacobian

$$\partial H(x) := \overline{co} \{ J = \lim_{m \to \infty} G'(y^m) \}$$

where $y^m \to x$, H is differentiable at each y^m .

Homotopy Reformulation

Find $H(s,x) : R \times R^n \to R^n$ such that x^* solves $VIP(\Omega, F)$ if and only if

 $\begin{array}{c} H(0,x)=0\\ \uparrow\\ \\ \text{Usually Nonsmooth} \end{array}$

H(s,x) differentiable when $s \neq 0$.

Example for NCP(F) $H(s,x) = (\sqrt{x_i^2 + F_i(x)^2 + s} - (x_i + F_i(x)))$ <u>Algorithms</u>

Choose $\{s_{\kappa}\} \subseteq R_{++}$ such that $s_{\kappa} \downarrow 0$. Compute an approximate solution $x^{\kappa,n_{\kappa}}$ of

$$H(s_{\kappa}, x) = 0.$$

Starting from x^{κ,n_κ} , an approximate solution $x^{\kappa+1,n_{\kappa+1}}$ of

$$H(s_{\kappa+1}, x) = 0.$$

Obtain a sequence $\{x^{\kappa,n_{\kappa}}\}_{\kappa=0}^{\infty} \to x^*$.

<u>Software</u>

 PATH ftp://ftp.cs.wisc.edu/math-prog /solvers/path/matlab/

• LANCELOT

• • • • • • •

Literature

- F. Facchinei and J.S. Pang (2003). Finite-Dimensional Variational Inequalities and Complementarity Problems. Springer-Verlag, New York.
- M.C. Ferris and J.S. Pang (1997). Engineering and economic applications of complementarity problems. SIAM Rev. 39:669–713.
- M.C. Ferris and T.S. Munson (1999). Interfaces to PATH 3.0: design, implementation and usage. Comput. Optim. Appl. 12:207–227.

• • • • • • •

Thank You All !