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Wavelet collocation method

Definition
A sequence {Vj}j∈Z of closed subspace of L2(R) is a Multi-resolution approximation if
the following 6 properties are satisfied:

∀(j, k) ∈ Z2, f (t) ∈ Vj ⇔ f (t − 2j k) ∈ Vj , (1)

∀j ∈ Z,Vj+1 ⊂ Vj , (2)

∀j ∈ Z, f (t) ∈ Vj ⇔ f (
t
2

) ∈ Vj+1, (3)

lim
j→+∞

Vj =
+∞⋂

j=−∞
Vj = {0}, (4)

lim
j→−∞

Vj =
+∞⋃

j=−∞
Vj = L2(R) (5)

There exists φ such that φ(t − n)n∈Z is a Riesz basis of V0. (6)



Wavelet collocation method
Remark

1. φ(t) is called a scaling function, φ is called orthogonal if

〈φ(t), φ(t − k)〉 = δ0,k (7)

2. The MRA is called orthodogonal if φ is orthogonal.

3. φn,k (t) = 2−
n
2 φ(2−nt − k) is a Riesz basis of Vn.

4. Since V0 ⊂ V−1, φ can be written in terms of the basis of V−1 as

φ(t) =
∑

k

hkφ−1,k (t) =
√

2
∑

k

hkφ(2t − k), (8)

which is called refinable equation and hk ’s are called recursion coefficients.

5.

h(ξ) =
1
√

2

k1∑
k=k0

hk e−ikξ (9)

is called symbol of refinable functions.



Wavelet collocation method

Theorem
A necessary condition for orthogonality is∑

k

hk h̄k−2l = δ0,l (10)

Lemma
If φ is a solution of the refinable equation with compact support, then

supp φ = [k0, k1]. (11)

Theorem
The orthogonality condition in equation in (10) is equivalent to

|h(ξ)|2 + |h(ξ + π)|2 = 1. (12)



Wavelet collocation method
Theorem
Let Wn be orthogonal completement of Vn in Vn−1, we have the following theorem,for
any orthogonal MRA with scaling function φ,

1. ⊕
n

Wn is dense in L2.2.
Wk⊥Wn if k 6= n.3.

f (t) ∈ Wn ⇔ f (2t) ∈ Wn+1 for all n ∈ Z.4.
f (t) ∈ Wn ⇔ f (t − 2−nk) ∈ Wn for all n, k ∈ Z.

5. There exists a function ψ ∈ L2 so that {ψ(t − k) : k ∈ Z} forms an orthogonal
stable basis of W0, and {ψn,k : n, k ∈ Z} forms a stable basis of L2.

6. Since ψ ∈ V1, it can be represented as

ψ(t) =
√

2
∑

k

gkφ(2t − k) (13)

for some coefficients gk , If hk are the recursion coefficients of φ, then we can
choose gk = (−1)k hN−k (14)

where N is any odd number.

The function ψ is called the wavelet function or mother wavelet. φ and ψ together form
a wavelet.



Wavelet collocation method

Theorem
If ψ is a wavelet with p vanishing moments that generates an
orthonormal basis of L2(R), then it has a support of size larger
than or equal to 2p − 1. A Daubechies wavelet has a minimum
size support equal to [−p + 1,p]. The support of the
corresponding scaling function φ is [0,2p − 1].



Wavelet collocation method
Deslauries-Dubuc interpolating function φ of order 2p − 1 is given by an
autocorrelation function of the Daubechies compactly supported orthogonal scaling
functions φ0 of p vanishing wavelet moments as

φ(x) =

∫ +∞

−∞
φ0(u)φ0(u − x)du (15)

which has even symmetry and minimum support of [−2p + 1, 2p − 1], and reproduces
polynomials of order 2p − 1. We choose φ(x) as a scaling function, which satisfies the
so-called dilation relation or the two-scale relation

φ(x) =
+∞∑

k=−∞
h∗kφ(2x − k). (16)

The filter coefficients h∗k in (16) are obtained from the Daubechies filter of the
compactly supported wavelets hk by

h∗k =
+∞∑

m=−∞
hmhm−k (17)

It can be easily shown that h∗−k = h∗k .



Wavelet collocation method
Discretization of derivatives using DDp scaling functions, let

f̃ (x) =
+∞∑

i=−∞
fi+ 1

2
φ(

x
∆x
− i −

1
2

) (18)

differentiate both sides of (18)we get

f̃ ′(x) =
+∞∑

i=−∞
fi+ 1

2
φ′(

x
∆x
− i −

1
2

) (19)

We use δ( x
∆x ) to test equation (19).

〈δ(
x

∆x
), f̃ ′(x)〉 = 〈δ(

x
∆x

),
+∞∑

i=−∞
fi+ 1

2
φ′(

x
∆x
− i −

1
2

)〉 (20)

Thus, we obtain
∆xf̃ ′(0) =

+∞∑
i=−∞

fi+ 1
2
φ′(−i −

1
2

) (21)



Wavelet collocation method
Since φ is compactly supported, the number of summation is finite, also because of
symmetry property of φ, we have,

∆xf̃ ′(0) = (
∑−1

i=−n +
∑n−1

i=0 )fi+ 1
2
φ′(−i − 1

2 )

=
∑n−1

i=0 (fi+ 1
2
− f−i− 1

2
)φ′(−i − 1

2 )
(22)

for example, discretization of f̃ ′(0) with DD2 is

f̃ ′(0) =
1.2291666667(f ( 1

2 )−f (− 1
2 ))−0.0937500000(f ( 3

2 )−f (− 3
2 ))

∆x

+
0.0104166667(f ( 5

2 )−f (− 5
2 ))

∆x

(23)

Where finite difference scheme is

f̃ ′(0) =
f ( 1

2 )− f (− 1
2 )

∆x
(24)



Numerical example

2D structured Time Domain Maxwell’s equations are solved
with Wavelet collocation methods and Finite difference method.

∂Hx
∂t = 1

µ
∂Ey
∂z

∂Hz
∂t = − 1

µ
∂Ey
∂x

∂Ey
∂t = 1

ε (∂Hx
∂z − ∂Hz

∂x )

(25)



Numerical example

Figure: a numerical example problem

Domain size: 5.0µm × 5.0µm
Number of cells in each direction: 128(FDM) or 64(WCM)
Number of cells in the width of PML layer: 20(FDM) or 10(WCM)

Check four steps t0 = 0, t1 = 4.5fs, t2 = 9fs, t3 = 13.5fs



Numerical example

Wavelet collocation method: DD2 scaling functions
Local accuracy: 3rd order (?)
Stability condition: ∆t ≤ 1

c
∑n−1

i=0 |a(i)|
1√

1
∆x2 + 1

∆y2 + 1
∆z2

Where a(i) = φ′(−i − 1
2).

Finite Difference Method:
Local accuracy: 2nd order
Stability condition: ∆t ≤ 1

c
1√

1
∆x2 + 1

∆y2 + 1
∆z2



Numerical example

Figure: WCM



Numerical example

Figure: FDM



Conclusion

WCM can get more accuracy with coarser grid than FDM, thus,
∆t can also be larger than that of FDM, which saves
computation time effectively.
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