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Motivation

Stylized Facts of High-Frequency Stock Market Data

e Random durations (Dacorogna et al. (2001))
e Distributional properties

> Fatter tails in the unconditional return distributions.
(Bollerslev et al. (1992), Marinelli et al. (2000))

> Stock returns are not independently and identically distributed.
(Burnecki and Weron (2004), Sun et al. (2007a))

e Autocorrelation (Bollwerslev et al. (2000), Wood et al. (1985))
e Seasonality (Gourieroux and Jasiak (2001))
e Clustering

> Volatility clustering. (Engle (2000))

> Trade duration clustering (Engle and Russell (1998), Ghysels et al. (2004), Sun et al.
(2006b))

e Long-range dependence. (Robinson (2003), Teyssiére and Kirman (2006), Sun et al. (2007a))
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Motivation

Modeling Irregularity and Roughness of Price Movement

e Capturing the stylized facts observed in high-frequency data
e [Establishing a model for the study of price dynamics
e Simulating price movement based on the established model

e Testing the goodness of fit for the established model

Modeling Dependence Structure

e Dependence of price movement of a single asset

e Dependence of price movement between several assets
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Fractal Processes

Why Fractal Processes”

e “The reasons are that the main feature of price records is roughness and that the proper language
of the theory of roughness in nature and culture is fractal geometry” (Mandelbrot (2005)).

e (Custom has made the increments’ ratio be viewed as “normal” and thought the highly anomalous
ratio has the limit H = 1/2.

e The fractal processes allow H # 1/2.
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Fractal Processes

What are the Fractal Processes?

e Fractal processes (self-similar processes) are invariant in distribution with respect to changes of
time and space scale. The scaling coefficient or self-similarity index is a non-negative number
denoted by H, the Hurst parameter.

e Lamperti (1962) first introduced semi-stable processes (which we nowadays call self-similar
processes).

o It {X(t+h)— X(h),t € T}=Z {X(t)— X(0),t € T} forall h € T, the real-valued
process { X (t),t € T} has stationary increments. Samorodnisky and Taqqu (1994) provide

a succinct expression of self-similarity: { X (at),t € T'} = {a X (t),t € T}. The process
{X(t),t € T} is called H-sssi if it is self-similar with index H and has stationary increments.
e In our study, two fractal processes are employed:

> fractional Gaussian noise
> fractional stable noise
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Fractal Processes

Fractional Gaussian noise

e For a given H € (0, 1) there is basically a single Gaussian H-sssi process, namely fractional
Brownian motion (fBm) that was first introduced by Kolmogorov (1940). Mandelbrot and
Wallis (1968) and Taqqu (2003) clarify the definition of fBm as a Gaussian H-sssi process
{BH(t)}tER with 0 < H < 1.

e The fractional Brownian motion (fBm) has the integral representation

Ba) = [ (-w!? - w7 Baw

— o0

where £, := max(x,0) and B(du) represents a symmetric Gaussian independently scat-
tered random measure.

e As to the fractional Brownian motion, Samorodnitsky and Taqqu (1994) define its increments
{Y;,7 € Z} as fractional Gaussian noise (fGn), which is, for 5 = 0, +1,42,..., Y; =
Bu(j+1) — Bu(j)-

e The main difference between fractional Brownian motion and ordinary Brownian motion is that

the increments in Brownian motion are independent while in fractional Brownian motion they
are dependent.
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Fractal Processes

Fractional stable noise

e The most commonly used extension of fBm to the a-stable case is the fractional Lévy stable
motion, which is defined by following integral representation

o0 1 1
H H—= H-—L
2/ = [ (-l - wl ) zadw
where Z,, is a symmetric a-stable independently scattered random measure.

e As to the fractional stable motion, Samorodnitsky and Taqqu (1994) define its increments
{Y;,7 € Z} as fractional stable noise (fsn), which is, for j = 0,£1,4+2,.... Y, =
273 +1) — 21 ().
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Fractal Processes

Stable Distribution

e Stable distribution requires four parameters for complete description:

> an index of stability a € (0, 2] (also called the tail index),
> a skewness parameter 3 € [—1, 1],

> a scale parameter v > 0,

> a location parameter { € .

e There is unfortunately no closed-form expression for the density function and distribution
function of a stable distribution. Lévy (1937) gives the definition of the stable distribution: A
random variable X is said to have a stable distribution if there are parameters 0 < a < 2,
—1 < 3 <1, > 0 and real ¢ such that its characteristic function has the following form:

exp{—7"0|"(1 — ¢B(signd) tan *) 4 iCO} if o #1

E exp(i60.X) = { exp{—710[(1 + iB2(signf) In |0]) +iC0} if a=1

and,
1 if 6>0
sign 6 = 0 2f 6=0
1 if 6<0

e Mandelbrot (1997) and Rachev and Mittnik (2000) apply it in finance.
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Tail Dependence and Unconditional Copulas

Tail Dependence

e In financial data, we can observe that extreme events happen simultaneously for different assets.
In a time interval, several assets might exhibit extreme values. Tail dependence reflects the
dependence structure between extreme events. It turns out that tail dependence is a copula

property.
o Letting (Y7, Y32)? be a vector of continuous random variables with marginal distribution func-
tions Fy, Fy, then the coefficient of the upper tail dependence of (Y7, YQ)T is

Ay = hrriP<Y2 > F2_1(’Lb)|Y1 > Fl_l(u)>
and the coefficient of the lower tail dependence of (Y7, Y3)? is
A = 11II(1)P<Y2 < Fz_l(u)\Yl < Fl_l(u))

If Ay > 0, there exists upper tail dependence and the positive extreme values can be observed
simultaneously. If Az, > 0, there exists lower tail dependence and the negative extreme values
can be observed simultaneously (Embrechts et al. (2003)).
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Tail Dependence and Unconditional Copulas

Unconditional Copulas

e Sklar (1959) has shown:

FY(yl,---,yn) — P(Yl Syh"'?YnSyn)
— C(Fyl(yl)a"'7FYn(yn))
where Fy,, ¢ = 1,...,n denote the marginal distribution functions of the random variables,
Y,.:=1,...,n.
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Tail Dependence and Unconditional Copulas

(Gaussian copula

e Let p be the correlation matrix which is a symmetric, positive definite matrix with unit diagonal,
and ®, the standardized multivariate normal distribution with correlation matrix p. The
unconditional multivariate Gaussian copula is then

Clurs v unip) = 2y (07w, @7 (),

and the corresponding density is

1 1 _
i) = o exp(—gAT(p . I>/\>,

where A = (&7 '(u1),...,d Y (u,))? and us, i = 1,2, ..., n are the margins.

o \yg=X—0.
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Tail Dependence and Unconditional Copulas

Student’s ¢ copula

e The unconditional (standardized) multivariate Student’s copula T}, ,, can be expressed as

Tyo(Ut, ... un;p) =t,, (t;l(ul), Cee t;l(un)>,

where ¢, , is the standardized multivariate Student’s ¢ distribution with correlation matrix p
and v degrees of freedom and ¢ 1is the inverse of the univariate cumulative density func-
tion (c.d.f) of the Student’s t with v degrees of freedom. The density of the unconditional
multivariate Student’s ¢ copula is

v+n
—2
vin sy s f (T 1/\>
Cov (U1 Up; p) = F(_2F><F(§)> ( v P
P,V PR T - v v v Y
COPATED) oy
where A; = ¢t ' (u;) and u;,j = 1,2, ..., n are the margins.

o A\y=—A—2 — QtV(\/V(llT_pp)).
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Tail Dependence and Unconditional Copulas

Skewed Student’s ¢ copula

e The skewed Student’s t copula is defined as the copula of the multivariate distribution of X.
Therefore, the copula function is

Clui, ..., un) = Fx(Fy (w),..., F, (un))

where F'x is the multivariate distribution function of X and sz_l (ur), k = 1, n is the inverse
c.d.f of the k-th marginal of X . That is, F'x (x) has the density fx(x) defined above and the
density function fx(x) of each marginal is

aK \/(V + (m_”k)2) I exp ((ZU — Mk)&)
(v+1)/2 Ok Okk Okk

fr(x) = — i1 , TER
<x—uk>2) v 1 ( <x—uk>2)”+1
((V + Okk 0kk> 1 + VO

where o is the k-th diagonal element in the matrix X:.

e Ay and A are determined by the signs of the skewness parameters.
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Empirical Framework I

Models for single stock returns

e Investigate the return distribution of German DAX stocks using intra-daily data under two
separate assumptions regarding the return generation process (1) it does not follow a Gaussian
distribution and (2) it does not follow a random walk.

e The high-frequency data at 1-minute frequency for 27 German DAX component stocks from
January 7, 2002 to December 19, 2003 are investigated.

e The ARMA-GARCH Model is employed.
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Empirical Framework I
The ARMA-GARCH Model

e ARMA model

Yt = g + ZO% Yi—i + €t + Z Bict—j.
i=1 j=1

e GARCH model

p q
2 2 2
Oy = KT nyio-t—i + Zejet—j'
i=1 j=1
Since €4 = o Uy, ue could be calculated from e; /0. Defining

5 £y

ut — Tta

Ot

where €} is estimated from the sample and & is the estimation of o. In our study, ARMA(1,1)-
GARCH(1,1) are parameterized as marginal distributions with different kinds of u; (i.e., normal
distribution, fractional Gaussian noise, fractional stable noise, stable distribution, generalized
Pareto distribution, and generalized extreme value distribution).
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Empirical Framework I
The Goodness of Fit Tests

e Kolmogorov-Smirnov distance (KS)

Y

KS = sup|F,(z) — F(x)
reR

e Anderson-Darling distance (AD)

Fu(e) - F(a)

AD = sup = =
"R\ JE(2)(1 — F(x))

Y

e Cramer Von Mises distance (CVM)
00 _ 2
CVM = / (Fs(az) —F(ac)) iF (z).

e Kuiper distance (K)

K = sup (Fs(fb’) — F(w)) +sup (F(x) — Fs(ﬂ?)>-
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Empirical Framework I

Empirical Results (In-sample)

Table 1: Summary of in-sample goodness of fit statistics for different models.

a. AD-statistic | AD,... AD, .4 AD,edian AD oz AD in -
ARMA-GARCH-fGn 46,6768 54,3660 13.7335 55.8641 21.6282 34.2250
ARMA-GARCH-fsn 44,1625 53.2522 15.2382 646001 1.3917 63.2084
ARMA-CGARCH-nor 46.7177 54.3751 13,7480 58.5747 21.0690 37.5057
ABRMA-GARCH-sta 454108 h3.50900 14,3638 052204 29886 02,2318
ARMA-GARCH-gev 46.6401 54 2656 13.7441 G0O.2271 210014 30,1357
ARMA-GARCH-gpd 51.2203 54 ATED 20,2070 109 5363 3.5018 106.0244
b. KS-statistic K8, con K S.4 K8, dian K8 oz K8, in K Srange
ARMA-GARCH-fGn 0.4098 (0.4902 0.0034 0.5285 04887 0.0305
ARMA-CGARCH-fan 04938 0.4965 00261 09725 02745 0.6980
ARMA-CGARCH-nor 0.6003 0.49094 000473 05455 0.4=03 0.0662
ARMA-CARCH-=sta 0.5089 0.4974 0.0622 0.9725 0.3910 0.5815
ARMA-GARCH-gev 05000 0.49859 0.0057 0.6775 0.4825 0.0950
ARMA-GARCH-gpd 05698 0.5195 0.1335 1.0000 0.4165 0.5835
c. CVM-statistic CVMpean CV M. CVM,..dian CVM,... CVM,... CVM ange
ARMA-GARCH-fGn 4495326 517.0503 203.7237 BO6.6917 82,9310 813.7T607
ARMA-GARCH-fsn 4452036 516.2956 202.2463 14736038 34.4169 1439, 1868
ARMA-GARCH-nor 449 6701 L1T.3712 203.7739 HEO 0445 £2.9532 H0G.0913
ABRMA-GARCH-sta 4547054 516.7259 2304694 20856218 AT.6066 2028.1152
ARMA-GARCH-gev 449 2438 S1T.0805 2032510 HEG.14TT B3 0258 HO3. 1159
ARMA-GARCH-gpd 5243309 521.2781 A70.3320 1978.9581 h2.06AT 19263945
d. Kuiper-statistic || Kuiperyen  Ruiperas RKuiperpedion RWuiperga. RKuiperp,  Kuiperiapg.
ARMA-GARCH-fGn 0.9931 0.,9937 0.00209 0.09585 09757 00227
ARMA-GARCH-fan 0.9693 09262 00473 0.99585 0.5125 0. 4260
ARMA-CARCH-nor 0.9931 0.9935 0.0029 0.9990 0.9750 0.0240
ARMA-CARCH-=sta 0.9796 0.9877 0.0224 0.9990 0.6550 0.3440
ARMA-GARCH-gev 0.9913 0.9925 0.0048 0.9990 0.9570 0.0420
ARMA-GARCH-gpd 0.9696 0.9773 0.0287 1.0000 0.6G505 0.3495
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Empirical Framework I
Empirical Results (Out-of-Sample)

Table 2: Goodness of fit statistics for out-of-sample one week forecasting of different models.

a. AD-statistic | ADucan AD, 4 ADcdian AD ax ADpin AD,ange
ARMA-GARCH-fGn 30.1821 22.5228 13.6283 55.2241 21.5834 33.6407
ARMA-GARCH-fsn 27.6038 22.4110 12.2880 68.1149 1.2129 66.9021
ARMA-GARCH-nor 30.1927 22.5228 13.6421 59.2046 21.1361 38.0684
ARMA-GARCH-sta 28.8034 22.3886 13.0021 101.7023 2.6941 99.0082
ARMA-GARCH-gev 30.1205 22.5005 13.5541 50.8893 20.7111 39.1782
ARMA-GARCH-gpd 32.3273 23.9319 15.3931 108.9876 4.1084 104.8792

b. KS-statistic HOS e KS.4 K Soaiian KSaxr KS, in K Seamss
ARMA-GARCH-fGn 0.5018 0.5006 0.0049 0.5375 0.4905 0.0470
ARMA-GARCH-fsn 0.4965 0.4985 0.0278 0.9555 0.2820 0.6734
ARMA-GARCH-nor 0.5020 0.5010 0.0055 0.5615 0.4880 0.0735
ARMA-GARCH-sta 0.5105 0.4990 0.0617 0.9653 0.4049 0.5603
ARMA-GARCH-gev 0.5018 0.5005 0.0064 0.5705 0.4846 0.0858
ARMA-GARCH-gpd 0.5700 0.5210 0.1333 1.0000 0.4049 0.5951
c. CVNM-statistic CV M, can CV Mg CV M, cdian CVM, ou CVM,.in CV M,ange
ARMA-GARCH-fGn 226.5630 02.4072 245.5856 950.0136 82.5743 867.4392
ARMA-GARCH-fsn 223.6907 91.6806 244.8920 1873.2304 34.0265 1839.2039
ARMA-GARCH-nor 226.6043 92.4969 245.5955 048.5973 82.7246 865.8726
ARMA-GARCH-sta 229.7204 92.0018 264.0086 2852.7912 T7.7136 2775.0774
ARMA-GARCH-gev 225.5252 02.2819 243.0575 933.6036 82.4613 851.1423
ARMA-GARCH-gpd 248.8990 94.077 282.0017 1929.6210 55.7156 1873.9054
d. Kuiper-statistic || Kuiper,con Kuipersyg Kuipergedion Kuiperp.. Kuiper,, Kuiper, ,g.
ARMA-GARCH-fGn 0.9935 0.9940 0.0032 1.0000 0.9715 0.0285
ARMA-GARCH-fsn 0.9698 0.9870 0.0481 0.9990 0.5362 0.4627
ARMA-GARCH-nor 0.9935 0.9940 0.0032 1.0000 0.9725 0.0275
ARMA-GARCH-sta 0.9801 0.9885 0.0231 0.9995 0.6876 0.3118
ARMA-GARCH-gev 0.9918 0.9930 0.0052 0.9995 0.9592 0.0402
ARMA-GARCH-gpd 0.9703 0.9780 0.0299 1.0000 0.6425 0.3575
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Empirical Framework I1

Models for single trade durations

e Ultra-high frequency data of 18 Dow Jones index component stocks based on NYSE trading
for year 2003 are examined.

e The trade durations were calculated for regular trading hours (i.e., overnight trading was not
considered).

e In the empirical analysis, an ACD(1,1) model structure is adopted.

e Six candidate distributional assumptions — lognormal distribution, stable distribution, expo-
nential distribution, Weibull distribution, fractional Gaussian noise, and fractional stable noise
are analyzed for estimation, simulation, and testing.
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Empirical Framework I1

The ACD model

di = ;u,

p q
Y = k+ > yidiee + 0597,
t=1 j=1

e wu,; can be calculated from d;/1);.
where @Ez is the estimation of ;.
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Empirical Framework I1

Empirical Results

AD AD* KS KS*
fsn > stable 327 345 327 362
(47.81%) | ( 50.44%) || ( 47.81%) | ( 52.93%)
stable > fsn 344 328 351 318
( 50.29%) | ( 47.95%) || (51.32 %) | ( 46.49%)
fsn ~ stable 13 11 6 4
(1.90%) | (1.61 %) (0.87%) | ( 0.58%)

e Supporting cases comparison of goodness of fit for fractional stable noise and stable distribution
based on AD and KS statistics. Symbol “ * 7 indicates the test for d;, otherwise the test is
for wy. Symbol “ >" means being preferred and “~" means indifference. Numbers shows the

supporting cases to the statement in the first column and the number in parentheses give the

proportion of supporting cases in the whole sample.
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Empirical Framework 11

Empirical Results

e Boxplot of AD and KSstatistics for u; in alternative distributional assumptions.
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Empirical Results

e Boxplot of AD and KS statistics for d; in alternative distributional assumptions.
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Empirical Framework I11

Models for multivariate returns with symmetric correlation

e The high-frequency data of the nine international stock indexes (i.e., AORD, DAX, FCHI,

FTSE, HSI, KS200, N225, SPX, and STOXX) from January 8, 2002 to December 31, 2003
were aggregated to the 1I-minute frequency level.

e The ARMA-GARCH Model as the Marginal Distribution.

e The Gaussian and Student’s t copula for correlation.
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Empirical Results

Empirical Framework I11

e Summary of the AD, KS and CVM statistics for alternative models for joint distribution. Mean,
median, standard deviation (“std”), maximum value (“max”), minimum value (“min”) and range

of the AD, KS and CVM statistics are presented in this table.

AD e Al e AD 4 AD AD,in A e
Gaussian copula 0.9241 0.9374 0.0338 0.9718 0.8370 0.1348
Student’s ¢ copula 0.9237 0.9362 0.0340 0.9716 0.8382 0.1334
K S, con KB i KS.ta KS, oz K3 K Srange
Gaussian copula 48.4519 55.5841 16.3230 67.9456 9.6306 58.3150
Student’s t copula 48.4470 55.5060 16.3190 67.9740 0.9158 58.0580
CVMpean | CVMmedian | CVMuad | CVMpaz | COVMupin | CVMrange
Gaussian copula 785.6190 798.7101 245134 | 817.5083 | 729.5811 87.9272
Student’s ¢ copula 785.2964 798.1155 24.6323 | 817.9235 | T28.6673 89.2562
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Empirical Framework IV

Models for multivariate returns with asymmetric correlation

e In this study, six indexes in German equity market (i.e., DAX, HDAX, MDAX, Midcaps, SDAX,
and TecDAX) are considered.

e The high-frequency data of the six indexes in German equity market listed above from January
2 to September 30, 2006 were aggregated to the 1-minute frequency level.

e The ARMA-GARCH Model as the Marginal Distribution.

e The Skewed Student’s t copula for correlation.
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The Data

e Plot of index dynamics.
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Empirical Framework

The Data

e Plot of index return.
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Empirical Results

Empirical Framework IV

Table 4: Mean of the in-sample and out-of-sample goodness of fit statistic for alternative models with joint distribution (Gaussian copula).

In-sample

Out-of-zample

FGN FSN Mormal Stable GEV GFD FGN FEN Normal Stable GEWV GFD

ES 0.5060 0.5048 0.5061 0.5120 0.5056 0.8231 0.5074 | 05073 | 0.5084 0.5139 0.5001 0.8%31
AD 32,9751 | 328757 329751 33.3603 | 33.1234 | 57.4691 | 24.0592 | 24.0571 | 24.1089 243672 24.1423 | 41.8651
CWM | 1773689 | 177.3087 | 177.3719 | 1778170 | 177.4900 | 561.5001 || 93.9545 | 93.9241 | 93.9594 042369 03.9836 | 207.2944
K 0.9052 0.9077 0.9953 0.9977 0.9979 0.9979 0.9953 | 009973 | 0.9936 0.9979 0.9951 0.9951

Table 5: Mean of the in-sample and out-of-sample goodness of fit statistic for alternative models with joint distribution (#-copula).
In-sample Out-of-zample

FGN FSM MNormal Stable GEWV GFD FGN FEN Normal Stable GEWV GFD

K3 0.5040 0.5053 0.5062 0.5140 0.5085 0.8834 0.50=50 | 0.5069 [ 0.5075 0.5163 0.5108 0.8829
AD 32.9006 | 32.9230 329776 33.4938 | 33.1240 | 57.4796 | 24.0832 | 24.0333 | 24.0658 24 4880 242235 | 41.8667
CWVM | 1773417 | 177.3131 | 177.3718 TT.9565 | 177.5208 | 56L.7679 | 93.9563 | 93.0064 | 93.9477 04.3351 04.0597 | 207.2955

K 0.9953 0.9976 0.9953 0.9975 0.9979 0.9951 0.9954 [ 09977 | 0.9985 0.9978 0.9950 0.9952

Table 6: Mean of the in-sample and out-of-sample goodness of fit statistic for alternative models with joint distribution {Skewed f-copula).

In-sample Out-of-zample
FGN FsM Mormal atable GEV GPD FGN FsM MNormal Stable GEV GPD
KS 0.5013 0.4993 0.5017 0.5075 0.5046 0.8570 0.5038 | 05018 | 0.5054 0.5085 0.5065 0.8576
AD 32,1926 | 31.78V9 32.2002 32,3578 | 32,1734 | 540610 | 23.6406 | 23.4495 | 23.6880 238110 23.7328 | 40,0679
CWM | 176.3376 | 175.6668 | 176.3228 | 176.2806 [ 176.2375 | 537.6012 || 93.3306 | 93.0380 | 93.4694 03.4583 03.4071 | 284.7948
E 0.9902 0.95862 0.9901 0.9861 0.9883 0.9853 0.9900 | 09873 | 09911 0.9875 0.9506 0.9901
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Empirical Framework IV

Empirical Results

e Summary statistics by groups of each creteria with respect to different models.

In-sample FGN FSN Normal Stable GEV GFPD
Gaussian copula || 52.9620 52.9217 529628 53.1717 53.0300 155.2125
Student ¢ copula || 52.9364 52.9347 52.9635 53.2405 53.0378 155.2822
Skewed t copula || 52.5054 52.2350 52.5037 52.5352 52.4759 148.3996

Out-of-sample FGN FSN Normal Stable GEV GFPD
Gaussian copula || 29.8779 29.8716 29.8938 30.0290 29.9083 85.2602
Student ¢ copula || 29.8877 29.8611 29.8799 30.0851 29.9480 85.2583
Skewed t copula || 29.6312 29.4941 29.6635 29.6914 29.6591 81.6776
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Conclusion

e Based on a comparison of the goodness of fit criteria, the empirical evidence shows that the
ARMA-GARCH model with fractional stable noise demonstrates better performance in mod-
eling univariate high-frequency time series data.

e By using the same criteria of goodness of fit test in comparing marginal distributions, the
multivariate Student’s ¢ copula with fractional stable ARMA-GARCH model has superior per-
formance when modeling the co-movement of nine global equity market indexes.

e When the multivariate time series data exhibit asymmetric correlation, the multivariate skewed
Student’s t copula with fractional stable ARMA-GARCH model has superior performance when
modeling the co-movement of six German equity market indexes.

e The advantage of the empirical study is threefold. First, using multi-dimensional copulas can
reveal the tail dependence of in co-movement of several assets. Second, our model can capture
long-range dependence, heavy tails, volatility clustering, and tail dependence simultaneously.
Third, using high-frequency data, the impact of both macroeconomic factors and microstructure
effects on asset return can be considered.
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Future Research

e Order book data analysis.

e Day-trading strategies with employing high-frequency data.

e Realized volatility and correlation estimators under non-Gaussian microstructure noise.
e Risk management.

e Dynamic portfolio management.

e High-frequency financial data mining and robust methods.
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