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Motivation

Stylized Facts of High-Frequency Stock Market Data
• Random durations (Dacorogna et al. (2001))
• Distributional properties

. Fatter tails in the unconditional return distributions.
(Bollerslev et al. (1992), Marinelli et al. (2000))

. Stock returns are not independently and identically distributed.
(Burnecki and Weron (2004), Sun et al. (2007a))

• Autocorrelation (Bollwerslev et al. (2000), Wood et al. (1985))
• Seasonality (Gourieroux and Jasiak (2001))
• Clustering

. Volatility clustering. (Engle (2000))

. Trade duration clustering (Engle and Russell (1998), Ghysels et al. (2004), Sun et al.
(2006b))

• Long-range dependence. (Robinson (2003), Teyssiére and Kirman (2006), Sun et al. (2007a))
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Motivation

Modeling Irregularity and Roughness of Price Movement

• Capturing the stylized facts observed in high-frequency data

• Establishing a model for the study of price dynamics

• Simulating price movement based on the established model

• Testing the goodness of fit for the established model

Modeling Dependence Structure

• Dependence of price movement of a single asset

• Dependence of price movement between several assets
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Fractal Processes

Why Fractal Processes?
• “The reasons are that the main feature of price records is roughness and that the proper language

of the theory of roughness in nature and culture is fractal geometry” (Mandelbrot (2005)).

• Custom has made the increments’ ratio be viewed as “normal” and thought the highly anomalous
ratio has the limit H = 1/2.

• The fractal processes allow H 6= 1/2.
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Fractal Processes

What are the Fractal Processes?
• Fractal processes (self-similar processes) are invariant in distribution with respect to changes of

time and space scale. The scaling coefficient or self-similarity index is a non-negative number
denoted by H, the Hurst parameter.

• Lamperti (1962) first introduced semi-stable processes (which we nowadays call self-similar
processes).

• If {X(t+ h)−X(h), t ∈ T} d
= {X(t)−X(0), t ∈ T} for all h ∈ T , the real-valued

process {X(t), t ∈ T} has stationary increments. Samorodnisky and Taqqu (1994) provide
a succinct expression of self-similarity: {X(at), t ∈ T} d

= {aHX(t), t ∈ T}. The process
{X(t), t ∈ T} is called H-sssi if it is self-similar with index H and has stationary increments.

• In our study, two fractal processes are employed:
. fractional Gaussian noise
. fractional stable noise
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Fractal Processes

Fractional Gaussian noise
• For a given H ∈ (0, 1) there is basically a single Gaussian H-sssi process, namely fractional

Brownian motion (fBm) that was first introduced by Kolmogorov (1940). Mandelbrot and
Wallis (1968) and Taqqu (2003) clarify the definition of fBm as a Gaussian H-sssi process
{BH(t)}t∈R with 0 < H < 1.

• The fractional Brownian motion (fBm) has the integral representation

BH(t) =

Z ∞

−∞

�
(t− u)

H−1
2

+ − (−u)
H−1

2
+

�
B(du)

where x+ := max(x, 0) and B(du) represents a symmetric Gaussian independently scat-
tered random measure.

• As to the fractional Brownian motion, Samorodnitsky and Taqqu (1994) define its increments
{Yj, j ∈ Z} as fractional Gaussian noise (fGn), which is, for j = 0,±1,±2, ..., Yj =

BH(j + 1)− BH(j).
• The main difference between fractional Brownian motion and ordinary Brownian motion is that

the increments in Brownian motion are independent while in fractional Brownian motion they
are dependent.
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Fractal Processes

Fractional stable noise
• The most commonly used extension of fBm to the α-stable case is the fractional Lévy stable

motion, which is defined by following integral representation

Z
H
α (t) =

Z ∞

−∞

�
(t− u)

H− 1
α

+ − (−u)
H− 1

α
+

�
Zα(du)

where Zα is a symmetric α-stable independently scattered random measure.

• As to the fractional stable motion, Samorodnitsky and Taqqu (1994) define its increments
{Yj, j ∈ Z} as fractional stable noise (fsn), which is, for j = 0,±1,±2, ..., Yj =

ZH
α (j + 1)− ZH

α (j).
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Fractal Processes

Stable Distribution
• Stable distribution requires four parameters for complete description:

. an index of stability α ∈ (0, 2] (also called the tail index),

. a skewness parameter β ∈ [−1, 1],

. a scale parameter γ > 0,

. a location parameter ζ ∈ <.

• There is unfortunately no closed-form expression for the density function and distribution
function of a stable distribution. Lévy (1937) gives the definition of the stable distribution: A
random variable X is said to have a stable distribution if there are parameters 0 < α ≤ 2,
−1 ≤ β ≤ 1, γ ≥ 0 and real ζ such that its characteristic function has the following form:

E exp(iθX) =

�
exp{−γα|θ|α(1− iβ(signθ) tan πα

2 ) + iζθ} if α 6= 1

exp{−γ|θ|(1 + iβ 2
π(signθ) ln |θ|) + iζθ} if α = 1

and,

sign θ =

8<
:

1 if θ > 0

0 if θ = 0

−1 if θ < 0

• Mandelbrot (1997) and Rachev and Mittnik (2000) apply it in finance.
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Tail Dependence and Unconditional Copulas

Tail Dependence
• In financial data, we can observe that extreme events happen simultaneously for different assets.

In a time interval, several assets might exhibit extreme values. Tail dependence reflects the
dependence structure between extreme events. It turns out that tail dependence is a copula
property.

• Letting (Y1, Y2)
T be a vector of continuous random variables with marginal distribution func-

tions F1, F2, then the coefficient of the upper tail dependence of (Y1, Y2)
T is

λU = lim
u→1

P

�
Y2 > F

−1
2 (u)|Y1 > F

−1
1 (u)

�

and the coefficient of the lower tail dependence of (Y1, Y2)
T is

λL = lim
u→0

P

�
Y2 < F

−1
2 (u)|Y1 < F

−1
1 (u)

�

If λU > 0, there exists upper tail dependence and the positive extreme values can be observed
simultaneously. If λL > 0, there exists lower tail dependence and the negative extreme values
can be observed simultaneously (Embrechts et al. (2003)).
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Tail Dependence and Unconditional Copulas

Unconditional Copulas
• Sklar (1959) has shown:

FY (y1, ..., yn) = P (Y1 ≤ y1, . . . , Yn ≤ yn)

= C(P (Y1 ≤ y1), . . . , P (Yn ≤ yn))

= C(FY1
(y1), . . . , FYn(yn))

where FYi, i = 1, . . . , n denote the marginal distribution functions of the random variables,
Yi, i = 1, . . . , n.

Dr. Wei Sun, University of Karlsruhe, Germany 11



Tail Dependence and Unconditional Copulas

Gaussian copula
• Let ρ be the correlation matrix which is a symmetric, positive definite matrix with unit diagonal,

and Φρ the standardized multivariate normal distribution with correlation matrix ρ. The
unconditional multivariate Gaussian copula is then

C(u1, . . . , un; ρ) = Φρ

�
Φ
−1

(u1), . . . ,Φ
−1

(un)

�
,

and the corresponding density is

c(u1, . . . , un; ρ) =
1

|ρ|1/2
exp

�
−

1

2
λ
T
(ρ
−1 − I)λ

�
,

where λ = (Φ−1(u1), . . . ,Φ
−1(un))

T and ui, i = 1, 2, . . . , n are the margins.

• λU=λL=0.
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Tail Dependence and Unconditional Copulas

Student’s t copula
• The unconditional (standardized) multivariate Student’s copula Tρ,ν can be expressed as

Tρ,ν(u1, . . . , un; ρ) = tρ,ν

�
t
−1
ν (u1), . . . , t

−1
ν (un)

�
,

where tρ,ν is the standardized multivariate Student’s t distribution with correlation matrix ρ
and ν degrees of freedom and t−1

ν is the inverse of the univariate cumulative density func-
tion (c.d.f) of the Student’s t with ν degrees of freedom. The density of the unconditional
multivariate Student’s t copula is

cρ,ν(u1, . . . , un; ρ) =
Γ(ν+n2 )

Γ(ν2)|ρ|1/2

�
Γ(ν2)

Γ(ν+1
2 )

�n0@
�

1 + 1
νλ

Tρ−1λ

�−ν+n2

Qn
j=1

�
1 +

λ2
j
ν

�−ν+1
2

1
A,

where λj = t−1
ν (uj) and uj, j = 1, 2, . . . , n are the margins.

• λU=λL=2− 2tν
�q

ν(1−ρ)
1+ρ

�
.
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Tail Dependence and Unconditional Copulas

Skewed Student’s t copula
• The skewed Student’s t copula is defined as the copula of the multivariate distribution of X.

Therefore, the copula function is

C(u1, . . . , un) = FX(F
−1
1 (u1), . . . , F

−1
n (un))

where FX is the multivariate distribution function ofX and F−1
k (uk), k = 1, n is the inverse

c.d.f of the k-th marginal of X. That is, FX(x) has the density fX(x) defined above and the
density function fk(x) of each marginal is

fk(x) =

aK(ν+1)/2

 r�
ν +

(x−µk)2

σkk

�
γ2
k

σkk

!
exp

�
(x− µk)

γk
σkk

�
��

ν +
(x−µk)2

σkk

�
γ2
k

σkk

�−ν+1
4 �

1 +
(x−µk)2

νσkk

�ν+1

, x ∈ R

where σkk is the k-th diagonal element in the matrix Σ.
• λU and λL are determined by the signs of the skewness parameters.
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Empirical Framework I
Models for single stock returns

• Investigate the return distribution of German DAX stocks using intra-daily data under two
separate assumptions regarding the return generation process (1) it does not follow a Gaussian
distribution and (2) it does not follow a random walk.

• The high-frequency data at 1-minute frequency for 27 German DAX component stocks from
January 7, 2002 to December 19, 2003 are investigated.

• The ARMA-GARCH Model is employed.

Dr. Wei Sun, University of Karlsruhe, Germany 15



Empirical Framework I
The ARMA-GARCH Model

• ARMA model

yt = α0 +

rX
i=1

αi yt−i + εt +

mX
j=1

βjεt−j.

• GARCH model

σ
2
t = κ+

pX
i=1

γi σ
2
t−i +

qX
j=1

θj ε
2
t−j.

Since εt = σt ut, ut could be calculated from εt/σt. Defining

ũt =
εst
σ̂t
,

where εst is estimated from the sample and σ̂t is the estimation of σt. In our study, ARMA(1,1)-
GARCH(1,1) are parameterized as marginal distributions with different kinds of ut (i.e., normal
distribution, fractional Gaussian noise, fractional stable noise, stable distribution, generalized
Pareto distribution, and generalized extreme value distribution).
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Empirical Framework I
The Goodness of Fit Tests

• Kolmogorov-Smirnov distance (KS)

KS = sup
x∈<

���Fs(x)− F̃ (x)
���,

• Anderson-Darling distance (AD)

AD = sup
x∈<

���Fs(x)− F̃ (x)
���q

F̃ (x)(1− F̃ (x))

,

• Cramer Von Mises distance (CVM)

CVM =

Z ∞

−∞

�
Fs(x)− F̃ (x)

�2

dF̃ (x),

• Kuiper distance (K)

K = sup
x∈<

�
Fs(x)− F̃ (x)

�
+ sup

x∈<

�
F̃ (x)− Fs(x)

�
.
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Empirical Framework I
Empirical Results (In-sample)
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Empirical Framework I
Empirical Results (Out-of-Sample)
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Empirical Framework II
Models for single trade durations

• Ultra-high frequency data of 18 Dow Jones index component stocks based on NYSE trading
for year 2003 are examined.

• The trade durations were calculated for regular trading hours (i.e., overnight trading was not
considered).

• In the empirical analysis, an ACD(1,1) model structure is adopted.

• Six candidate distributional assumptions — lognormal distribution, stable distribution, expo-
nential distribution, Weibull distribution, fractional Gaussian noise, and fractional stable noise
are analyzed for estimation, simulation, and testing.
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Empirical Framework II
The ACD model

•

di = ψi ui,

•

ψ
2
i = κ+

pX
t=1

γi di−t +

qX
j=1

θj ψ
2
i−j,

• ui can be calculated from di/ψi.

ũi =
di

ψ̂i
,

where ψ̂i is the estimation of ψi.
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Empirical Framework II
Empirical Results

• Supporting cases comparison of goodness of fit for fractional stable noise and stable distribution
based on AD and KS statistics. Symbol “ * ” indicates the test for dt, otherwise the test is
for ũt. Symbol “ �” means being preferred and “∼” means indifference. Numbers shows the
supporting cases to the statement in the first column and the number in parentheses give the
proportion of supporting cases in the whole sample.
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Empirical Framework II
Empirical Results

• Boxplot of AD and KSstatistics for ũt in alternative distributional assumptions.
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Empirical Framework II
Empirical Results

• Boxplot of AD and KS statistics for dt in alternative distributional assumptions.
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Empirical Framework III
Models for multivariate returns with symmetric correlation

• The high-frequency data of the nine international stock indexes (i.e., AORD, DAX, FCHI,
FTSE, HSI, KS200, N225, SPX, and STOXX) from January 8, 2002 to December 31, 2003
were aggregated to the 1-minute frequency level.

• The ARMA-GARCH Model as the Marginal Distribution.

• The Gaussian and Student’s t copula for correlation.
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Empirical Framework III
Empirical Results

• Summary of the AD, KS and CVM statistics for alternative models for joint distribution. Mean,
median, standard deviation (“std”), maximum value (“max”), minimum value (“min”) and range
of the AD, KS and CVM statistics are presented in this table.
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Empirical Framework IV
Models for multivariate returns with asymmetric correlation

• In this study, six indexes in German equity market (i.e., DAX, HDAX, MDAX, Midcaps, SDAX,
and TecDAX) are considered.

• The high-frequency data of the six indexes in German equity market listed above from January
2 to September 30, 2006 were aggregated to the 1-minute frequency level.

• The ARMA-GARCH Model as the Marginal Distribution.

• The Skewed Student’s t copula for correlation.
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Empirical Framework
The Data

• Plot of index dynamics.
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Empirical Framework
The Data

• Plot of index return.
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Empirical Framework IV
Empirical Results
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Empirical Framework IV
Empirical Results

• Summary statistics by groups of each creteria with respect to different models.
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Conclusion

• Based on a comparison of the goodness of fit criteria, the empirical evidence shows that the
ARMA-GARCH model with fractional stable noise demonstrates better performance in mod-
eling univariate high-frequency time series data.

• By using the same criteria of goodness of fit test in comparing marginal distributions, the
multivariate Student’s t copula with fractional stable ARMA-GARCH model has superior per-
formance when modeling the co-movement of nine global equity market indexes.

• When the multivariate time series data exhibit asymmetric correlation, the multivariate skewed
Student’s t copula with fractional stable ARMA-GARCH model has superior performance when
modeling the co-movement of six German equity market indexes.

• The advantage of the empirical study is threefold. First, using multi-dimensional copulas can
reveal the tail dependence of in co-movement of several assets. Second, our model can capture
long-range dependence, heavy tails, volatility clustering, and tail dependence simultaneously.
Third, using high-frequency data, the impact of both macroeconomic factors and microstructure
effects on asset return can be considered.
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Future Research

• Order book data analysis.

• Day-trading strategies with employing high-frequency data.

• Realized volatility and correlation estimators under non-Gaussian microstructure noise.

• Risk management.

• Dynamic portfolio management.

• High-frequency financial data mining and robust methods.
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