Mathematics and Banking

Han Zhou

Equity and Mathematics

- Plain-Vanilla Warrant
 - Call or Put
 - Black-Scholes Formular

$$C = S\Phi(d_1) - Ke^{-rT}\Phi(d_2)$$

- Exotic Warrant
 - Digital Warrant
 - How to find the price?

Pricing of Digital Warrant

Using Black-Scholes Formular

$$P = Q e^{-rT} N(d_2)$$

- Is the pricing optimal?
 - no. The price is very sensitive to volatility
 - we use the following formular
 Price = Lim Call(k) Call (k + 1/N), for n -> infinity

Volatility Issues

- Historical Volatility
 - Dax Vola-New index published by Deutsche Börse and Goldman-Sachs
- Implied Volatility
- Which one is better?
 - example of car driving
 - example of vola before a big event
 - simplicity of historical volatility
- Stochastic Volatility
 - better for pricing but difficult to obtain
 - input is implied volatility. So the quality of implied volatility is very important, which could cause a very bad stochastic volatility

Implicated Volatility

- Review of the procedure of calculating implied vola for DAX
 - market data
 - DAX-options on eurex, with maturity Dec08, Jan09, Feb09, Mar09, Jun09, Dec09, Jun10, Dec10, Dec11
 - OTM options, as prices are sensitive to volatility
 - Outlier
 - using BS-forumlar and numerical methods to obtain volatilities for those points
 - Interpolation methods are used to obtain a full surface of volatility.
 - Dividends are not taken into consideration, as DAX is performance index.

Controlling and Mathematics

- Statistics gives a overview of the market and risks in a bank
- Example of turbo-warrant and the market
 - What's turbo-warrant
 - How does a bank hedge the position:
 - Using future contract with the nearst maturity, e.g. Dax-Future now has maturity Dec08, Mar09, Jun09
 - If the market is volatile, how much exposure a bank faces?
 - The Jerome Kerviel scandal of SocGen,
 - The collapse of Lehman Brothers
 - Let's caluclate the risk for a small bank A

Example of Bank A Part I

- The market is volatile
- The position of turbo warrants with underlying DAX:
 - 10k turbo warrants with ratio 1
 - 10k turbo warrants with ratio 0.1
- We carry out simple statistics (Gap-Analysis)
 - take 100 b-days history of open and close of DAXfurture contract with the nearst maturity
 - determine the stubs and calculate the "Häufigkeiten".

Example of Bank A II

- The result were
 - 10 days, average -100
 - 60 days, average -50
 - 20 days, average 50
 - 10 days, average 100
- An empirical measure is
 - average -100, p = 0.1
 - average -50, p = 0.6
 - average 50, p = 0.2
 - average 100, p = 0.1
- Then we have our expectations = 20
- Our position is $10k^*0.1 + 10k = 11k$
- Owing to the linearity of the portfolio, we have our risk of 11k *- 20 = -220k